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Chapter 2 )
How Mathematics Figures Differently gk
in Exact Solutions, Simulations,

and Physical Models

Susan G. Sterrett

Abstract The role of mathematics in scientific practice is too readily relegated to
that of formulating equations that model or describe what is being investigated,
and then finding solutions to those equations. I survey the role of mathematics
in: 1. Exact solutions of differential equations, especially conformal mapping; and 2.
Simulations of solutions to differential equations via numerical methods and via
agent-based models; and 3. The use of experimental models to solve equations
(a) via physical analogies based on similarity of the form of the equations, such as
Prandtl’s soap-film method, and (b) the method of physically similar systems. Two
major themes emerge: First, the role of mathematics in science is not well described
by deduction from axioms, although it generally involves deductive reasoning.
Creative leaps, the integration of experimental or observational evidence, synthesis
of ideas from different areas of mathematics, and insight regarding analogous forms
are required to find solutions to equations. Second, methods that involve mappings
or transformations are in use in disparate contexts, from the purely mathematical
context of conformal mapping where it is mathematical objects that are mapped, to
the use of concrete physical experimental models, where one concrete thing is shown
to correspond to another.

Keywords Equations - Models - Mathematics - Conformal mapping - Physically
similar systems - Simulations

2.1 Introduction

The role of mathematics in scientific practice is too readily relegated to that of
formulating equations that model or describe what is being investigated, and then
finding solutions to those equations. That is a tidy but incomplete account of the role
of mathematics in science. For one thing, mathematics is involved in experimental
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6 S. G. Sterrett

investigations to help answer investigative questions in ways other than finding solu-
tions to mathematical equations. Further, the equations themselves can be involved
in scientific practice in a variety of ways, some of which are substantively differ-
ent from others. Identifying, clarifying, and explaining those different ways is my
topic in this paper. To clarify the differences, I’ll focus my discussion in this short
paper on comparing how mathematics is involved in exact solutions, simulations,
and experimental physical models.

2.2 Exact Solutions of (Differential) Equations

Which mathematical methods are used in solving equations of mathematical physics
depends, of course, on the kind of equation. If we are talking about differential
equations, then what is meant by a solution to the equation is a function that satisfies
the equation. Sometimes the problem also specifies boundary values or initial values,
adding more specific requirements that the function proposed as a solution to the
differential equation must meet. Though it is possible to show, for some classes
of equations, the existence and uniqueness of a solution, this is not the case in
general. The Navier-Stokes equations in fluid dynamics are a set of partial differential
equations, and the question of whether smooth, physically reasonable solutions to
them exist is one of the Clay Mathematics Institute’s Millenium problems.’

The study of solutions of partial differential equations, i.e., differential equations
that involve partial derivatives, is an entire field of study unto itself. Partial differential
equations are further classified into a variety of major types. The details of the
classification are too involved to lay out here. For this discussion, I mention a few
specific differential equations that have been given special names: the wave equation,
the diffusion equation, and Laplace’s equation. Many more could be mentioned.

Although the wave equation, the diffusion equation, and Laplace’s equation are
special cases of a differential equation, each constitutes an entire area of research in
mathematical physics. Each applies to an indeterminately wide variety of phenomena
in physics. The wave equation applies to electrical waves as well as mechanical waves
and many other kinds of waves; the diffusion equation to heat diffusion (conduction),
diffusion of particles, and diverse kinds of diffusion; and Laplace’s equation likewise
applies to a wide range of phenomena that arise in the study of heat, fluid flow,
electrostatics, and similar phenomena in physics.

Our question in this context is thus how mathematics is involved in finding exact
solutions of partial differential equations in mathematical physics. A straightforward
approach to answering it is immediately thwarted, though, as there is no general
method for finding exact solutions to partial differential equations. Deriving solutions
to partial differential equations is not so much a matter of deductive logic, much less
symbolic logic and set theory, as itis a matter of creativity by someone knowledgeable

! The official problem description is here: “Existence and Smoothness of the Navier-Stokes Equa-
tion” by Charles R Fefferman (https://www.claymath.org/sites/default/files/navierstokes.pdf).
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2 How Mathematics Figures Differently in Exact Solutions ... 7

in disparate fields of mathematics, some of which might be far afield from the equation
in question. Often a significant amount of intellectual work is involved in identifying
and reflecting on features of the equations to be solved, on boundary conditions, and
on the difference that various kinds of boundary conditions make to the nature and
existence of solutions, symmetries of a particular problem, and so on. Then, itis often
a matter of resourcefulness. Even though I will later want to emphasize that there
are other methods in mathematical physics than finding exact solutions, I still wish
to register an appropriate appreciation of what is involved in finding exact solutions.

One of the most elegant and beautiful methods used in finding a function that is an
exact solution to a partial differential equation is conformal mapping. The basic idea
of the method is familiar from cartography: to map figures from the spherical earth
onto a flat surface while at the same time preserving angles locally involves stretching
and translation of the figures on the surface of a globe. The geometrical problem of
which direction to head in to get from one point to another on the globe is solved by
finding the line between those two points on the flat map, even though distances and
areas are not correct on the flat map. In complex analysis, this basic idea was applied
to map figures and graphs from one flat two-dimensional surface to another via
transformations that involve stretching/shrinking and translation. Riemann’s 1851
dissertation is credited with this creative suggestion (in spite of details about the
proof and distinctions about the use of the term ‘conformal’ that would be brought
up in discussing his formulation and proof today.) Ullrich notes:

As an application of his [Riemann’s] approach he gave a ‘worked-out example’, showing

that two simply connected plane surfaces can always be made to correspond in such a way

that each point of one corresponds continuously with its image in the other, and so that
corresponding parts are ‘similar in the small’, or conformal . . . (Ullrich 2005, 454)

Conformal mapping was developed and used in complex analysis to find exact solu-
tions to partial differential equations with great success in the 19th century. Bazant?
remarks that

The classical application of conformal mapping is to solve Laplace’s equation:

v2<p=0

i.e. to determine harmonic functions in complicated planar domains by mapping to simple
domains. The method relies on the conformal invariance of Eq. (1.1) [above], which remains
the same after a conformal change of variables. (Bazant 2004, 1433)

Thus, problems involving complicated shapes of objects, boundaries, or surfaces
would first be mapped, by a savvy choice of change of variables, to a new domain
in which the shapes made the problem tractable (e.g., mapping an airfoil to a circle).
Then, after solution in the new domain, the solved problem would be transformed
back to the original domain, using the inverse of the function that had been used to
map the problem from the original domain in which the shape was complicated to the

2 ] am indebted to Lydia Patton for introducing me to the work of Martin Z. Bazant, in her talk “Fish-
bones, Wheels, Eyes, and Butterflies”, given at the Midwest Philosophy of Mathematics Workshop
17, University of Notre Dame, 12—13 November 2016.
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Fig. 2.1 Schwarz-Cristoffel transformation of upper half-plane

domain in which the problem was tractable. Using the inverse function mapped the
(now solved) problem from the domain in which it was solvable back to the original
domain. This meant that the solution to the problem was mapped back to the original
domain, too. So, it was a way of obtaining solutions to mathematical problems that
were intractable as originally stated.

As mathematically elegant as this means of solving intractable problems was, it
was not without a concrete precedent. Navigators in the 16th century could answer
the question of which direction they should head on the spherical surface of the
actual earth by consulting a flat map in which directions between points on the
earth were preserved between corresponding points on the flat map—in spite of
how distorted land shapes and area proportions were on the flat map. Likewise, a
scientist could now solve problems that were otherwise intractable by working on the
suitably transformed problem instead. The hard work is in finding the transformation
that transforms the problem in such a suitable manner that the transformed problem
is tractable and allows these two-way mappings. It is crucial to obtaining exact
solutions to sets of differential equations via conformal mapping to be able to identify
an appropriate transformation, i.e., an appropriate mapping function. Later in this
paper, we will see other contexts in which attending to the role that an appropriate
mapping function plays is likewise crucial, and why its role is so philosophically
significant.

One of the earliest, and still well-known, transformations is the Schwarz-Cristoffel
transformation. An example of the many problems to which it has been applied,
taken from a nineteenth century text, is shown below.® While the figures are simple,
it takes some time to contemplate and fully appreciate what the mapping effects, e.g.,
to understand just what the interior points of the polygon in Fig.2.2 are mapped to.

The same mapping can be used to map all sorts of geometrical figures occurring in
a variety of fields of physics. Sometimes a conformal transformation maps points at
infinity to points on a figure. In fact, the Schwarz-Cristoffel style of map mentioned
above is often illustrated by showing how the infinite (upper) half-plane can be
mapped to various objects, such as a triangle. The visual insight as described in the
19th century text uses both Figs.2.1 and 2.2 above: “when x turns to the right into

3 Figures 2.1 and 2.2 are taken from Harkness and Morley 1898, 321).
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2 How Mathematics Figures Differently in Exact Solutions ... 9

Fig. 2.2 Schwarz-Cristoffel
transformation: polygon

the upper half-plane, as indicated by the arrow in the right-hand part of Fig.2.1, w
turns also to the right into the interior of the polygon, as indicated by the arrow in
the w-polygon of Fig.2.2. Hence the upper half of the x-plane maps into the interior
of the w-polygon” (Harkness and Morley 1898, 322).

Bazant comments that “important analytical solutions were thus obtained for
electric fields in capacitors, thermal fluxes around pipes, inviscid flows past airfoils,
etc.” citing twentieth-century works (Bazant 2004, 1434). Today there are computer
programs that can carry out the transformations. These applications developed from
the methods first that first arose in the mid-nineteenth century. However, the story of
that method did not end once it achieved success in finding exact solutions to problems
expressible in the form of Laplace’s equation. In the early twenty-first century, the
creativity and resourcefulness of some mathematicians led them to consider how
this method of solution might be used elsewhere, i.e., for a different kind of problem
in mathematical analysis. Though conformal mapping developed from within the
study of Laplacian problems, it did not stay there. Bazant exuberantly reported in
2004 that:

Currently in physics, a veritable renaissance in conformal mapping is centering around
‘Laplacian-growth’ phenomena, in which the motion of a free boundary is determined by
the normal derivative of a harmonic function. . . . Such problems can be elegantly formulated
in terms of time-dependent conformal maps, which generate the moving boundary from its
initial position. (Bazant 2004, 1434)
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10 S. G. Sterrett

Bazant describes developments that followed using iterated conformal maps, and then
applied conformal mapping to Laplacian fractal-growth phenomena. His 2004 paper
then brings the method to bear on a whole different class of problems in analysis: it
proceeds from Laplacian fractal-growth phenomena to non-Laplacian fractal growth
phenomena. It’s the leap from Laplacian to non-Laplacian that’s notable here: “One
of our motivations here is to extend such powerful analytical methods to fractal
growth phenomena limited by non-Laplacian transport processes. Compared with
the vast literature on conformal mapping for Laplace’s equation, the technique has
scarcely been applied to any other equations.” In fact, it just hadn’t been thought
possible to do so.

He explains his own thought process in applying the technique beyond Laplacian
equations. Bazant says that, after some reflections on the fundamental features of
Laplacian equations that lend themselves to solutions by conformal mapping, he
questioned the common belief that the Laplacian operator is unique in being confor-
mally invariant. He shows that certain systems of equations are conformally invariant,
too. This then enables him to apply conformal mapping techniques to problems to
which it had not been thought the technique of conformal mapping could be applied.
As he tells the story, the advance boils down to one key insight, namely: “Every-
thing in this paper follows from the simple observation that the advection operator
transforms just like the Laplacian” (Bazant 2004, 1436).

Obviously coming up with these mathematical methods involves much more than
deductive logic. What else? Analogy, knowledge of a variety of areas of mathematics,
identifying and questioning a presumption prevailing among mathematicians, and
creative leaps. So, it took more than the straightforward application of deduction in
mathematics to come up with the methods Bazant reveals.

Once these methods are in hand, though, we can ask where and how mathematics
is involved in the activity of using these methods to find exact solutions. Here we can
be more precise about an answer: Not only is mathematics involved in putting the
problem from physics into the mathematical language of differential equations, but it
isinvolved in transforming that mathematical problem into one that is tractable. Once
the problem is transformed, it can be solved in its novel form, and then one can use the
inverse of the transformation process to put it back into the original domain, where
it can be interpreted in the language of physics. Hence the mathematical functions
that effect the mappings, and the construction of the domains where problems can
be made tractable, are of crucial significance.

2.3 Simulations

Exact solutions of (partial differential) equations in mathematical physics are the
exception rather than the rule, though.* Hence calculational methods have been devel-
oped. Numerical methods predate the current high-speed computational devices and

4 This point is also made and discussed in McLarty, this volume Colin (2023).
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2 How Mathematics Figures Differently in Exact Solutions ... 11

systems in use today. It is often pointed out that some numerical methods associated
with the calculus are due to, and hence in use as early as, Isaac Newton, but numer-
ical methods are at least as old as papyri. New methods continue to be developed
and enjoy widespread use, such as the finite element method in the latter twentieth
century and agent-based modeling (cellular automata) in the twenty-first century,
which will be discussed separately below. The widespread use of numerical methods
and simulations does not, however, render exact solutions useless or unnecessary—
when an exact solution does exist for certain cases, the exact solution serves the
important role of a ‘benchmark’ against which numerical methods or simulations
are compared.’

2.3.1 Simulations of (Differential) Equations
of Mathematical Physics

The simulations discussed here are numerical or other kinds of formal methods
used in mathematical physics to yield approximations of solutions to the equations
of mathematical physics. Whereas the methods used in finding exact solutions are
elegant and deeply satisfying intellectually, the methods used in finding good sim-
ulations are nifty and deeply satisfying as well, in terms of their ability to provide
practical and useful answers to analytically intractable problems. A wide variety of
numerical methods have been developed, and the way that mathematics is involved
in them varies accordingly. Some revolve around finite difference methods whereas
others rely on probability, such as the Monte Carlo method. Perturbation theory and
theory of errors are foundational theories for other numerical methods. Yet, with
respect to the question in this paper, some generalizations can be made.

The ways that mathematics may be involved in the simulations under discussion
here can be categorized in terms of three kinds of activity.

First, the development of equations, algorithms, and other formal methods in
order to turn a problem involving the differential equation or systems of them into a
problem that is well suited for computation.

Second, verification that the methods so developed will produce results that are
solutions of the problem, within a certain band of error, and under certain limitations
on the range of the variables in the problem. This step usually involves mathematical
proofs and deductive reasoning, and often identifies the range of variable values over
which the method is to be used.

Third, validation of the simulation via comparison with either exact solutions
(used as ‘benchmarks’), observational data, or experimental data, such as the results
of an experimental physical model.

To be clear, these activities are not performed on an individual basis by an individ-
ual researcher very often anymore. Not only the first step of transforming the problem
into one that is computationally tractable, but the steps of verification and validation,

5 The use of benchmarks in simulations is likewise discussed in Patton, this volume Patton (2023).
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12 S. G. Sterrett

are often carried out by communities of researchers (including researchers working
for vendors of software) and inherited by subsequent researchers in the form of soft-
ware. Hence it is quite common for someone to design and run a simulation without
performing any of the three steps themselves. Ideally, such users would understand
at least the basics of the first step (i.e., transforming the problem into one that is com-
putationally tractable), and the second step, of understanding the ranges outside of
which the method has not been verified. For, the users of the community-developed
and verified software must make judgments in choosing which software to use for
the problem they wish to solve, and in implementing the computationally tractable
version of the problem in the software. Neither of these decisions is trivial, nor, if
done well, free of mathematical reasoning. The third step, validation of the simula-
tion, involves making comparisons between the values of quantities calculated by the
simulation and values obtained some other way; either using an analytically closed
form solution (exact solution) in the benchmark case, observational data, or exper-
imental data from a specially constructed experimental physical model. Here the
usual role that mathematics plays in working with measurements and uncertainties
is involved.®

The topic of this paper is the role of mathematics in various methods in math-
ematical physics. However, the inclusion of the validation step hints at something
else that is noteworthy. Computer software such as software that integrates fluid
flow, heat conduction, and mass transfer in a computational flow dynamics pro-
gram is not totally a matter of mathematics, even when numerical methods are
included among mathematical methods. For empirical results of experimental stud-
ies are involved in the first step (development of formal methods that appropriately
include physical factors), though sometimes in hidden ways (e.g., judgments as to
whether a certain factor can be neglected), as well as in the third step (validation of
the method/algorithm/software). If understood as a single linear three-step process,
however, even if this point is appreciated, the description still does not quite reveal the
extent to which experimental results are involved in the computation, for the process
of building simulations involves much trial and error, iteration, and feedback—even
in mathematical physics.

2.3.2 Agent-Based Simulations

The way that mathematics is involved in agent-based simulations is distinctive
enough that they deserve separate mention. These kinds of simulations aren’t imple-
mentations of algorithms to obtain approximations to solutions of equations. In agent-
based simulations, rules are devised to proscribe the behavior of many individual
agents acting in the same environment, in an attempt to model complex systems in
which it is patterns of behavior that are of interest. Usually these rules for agents

6 Relevant philosophical work on the topic of numerical methods and/or simulations can be found
in Fillion (2017) and Lenhard (2019).
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2 How Mathematics Figures Differently in Exact Solutions ... 13

are based in part on facts about other agents, such as how many agents of a certain
kind are left, what they are doing, or how close other agents are to it. However, the
rules are usually fairly simple rules mathematically speaking. So is the behavior of
an individual agent: either ON or OFF (or ‘alive’ or ‘dead’). Different patterns arise
depending on the initial configuration, and one soon begins to see the patterns of
agent behavior as objects in their own right. They come to be regarded as agents and
actions at a higher level than individual rule-following agents. Most philosophers
were introduced to these ideas via the “Game of Life” by John H. Conway, often via
Daniel Dennett’s 1991 “Real Patterns” (Dennett 1991, 27-51).

Agent-based simulations today are much more sophisticated. For instance, the
environment in which the agents act can include resources that influence the agents’
capabilities to act, and the algorithms contain parameters that amplify or dampen rates
or intensities. Swarm behavior of birds and fish, as well as the behavior of crowds and
traffic, have been modeled with such agents. The kinds of uses researchers have made
of one such simulation program alone—Uri Wilensky’s NETLOGO—is seemingly
unlimited: art, biology, epidemiology, earth science, chemistry, hydrology, political
science and social science, and so on. Hundreds of thousands of people from many
different disciplines have used it.” Conway’s much simpler “Game of Life” can be
programmed as a NETLOGO model, too (Wilensky 1998 and Wilensky 1999).

Since some phenomena that are described by differential equations, such as diffu-
sion of particles and predator-prey interactions, can be modelled using agent-based
models as well, the question of how the mathematics used in each are related natu-
rally arises. NETLOGO has been expanded beyond agent-based models, to include
a “Systems Dynamics” modeler, so that both the agent-based approach and the kind
of approach used to develop differential equations to describe the same behavior can
be taken. Wilensky describes the difference in how Wolf-Sheep predation is mod-
eled when using the Systems Dynamics Modeler, versus the NETLOGO agent-based
simulation modeler, as follows.

System Dynamics is a type of modeling where you try to understand how things relate

to one another. It is a little different from the agent-based approach we normally use in

NetLogo models. With the agent-based approach we usually use in NetLogo, you program

the behavior of individual agents and watch what emerges from their interaction. In a model

of Wolf-Sheep Predation, for example, you provide rules for how wolves, sheep and grass

interact with each other. When you run the simulation, you watch the emergent aggregate-

level behavior: for example, how the populations of wolves and sheep change over time.

With the System Dynamics Modeler, you don’t program the behavior of individual agents.
Instead, you program how populations of agents behave as a whole.®

The way mathematics and logic are involved in the agent-based simulation, then,
is really not just “a little” different from the way it is involved in the System Dynam-
ics Modeler; it is strikingly and fundamentally different. For there is no equation
describing the dynamics of the populations of predator and prey involved. Rather,

7 A running list of publications in which NetLogo was used or mentioned, many in scientific journals,
is maintained on NetLogo’s website. The list contains hundreds if not thousands of papers from
1999 to the present, and more are added daily.

8 “NetLogo Systems Dynamic Guide”, n.p.
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14 S. G. Sterrett

rules for individuals in the population are formulated, and in running the simulation,
the dynamics of the predator and prey populations “emerges” from the agents acting
according to those rules, as a matter of logical deduction.

However, models in use today are not always one or the other (i.e., not completely
agent-based nor completely equation based); some are hybrid. NETLOGO is often
integrated into other models, as part of a more comprehensive program. For instance,
in hydrology, one model in use combines agent-based approaches in NETLOGO
for the effect of agents who use water, along with finite-difference methods for
solving equations of hydrological models of water flow (Castilla-Rho 2015). Further
complicating any attempt at a strict taxonomy are newer developments in which the
agents’ behavior is continuous rather than discrete, as in the agent-based programs
developed to model behavior of continua. The Turbulence model is one example
(Wilensky 2003).; another is the vibration of a plate or membrane (Wilensky 1997).

When using agent-based models to investigate what emerges from agent-based
approaches, apart from the aim of solving differential equations in mathematical
physics, it could be that very little mathematics is involved, even when the behavior
that emerges turns out to be a numerical or approximate solution to a differential
equation. But in such a case, one is not looking for a solution to an equation, and
thus there is no right or wrong in the matter. Inasmuch as the models are used
to solve problems of mathematical physics, the process is broadly the same as the
three part process described above for numerical methods: development of the formal
method, verification of the formal method, and (depending on the aim of the modeler)
validation of the formal method. Thus there is more involved than mathematics:
observation and experimentation are involved, too.

2.4 Role of Mathematics in Experimental Physical Models

As mentioned earlier, although exact solutions have been found for a few special cases
of the Navier-Stokes equations and other systems of partial differential equations,
no general method for their solution is known. Conformal mapping is an elegant and
powerful method, but it is not a general method,; it relies on a researcher’s creativity
and resourcefulness. Observed phenomena related to turbulence, such as its onset
and the separation of the laminar from turbulent regions of flow, are still not well
understood nor mathematically tractable for many configurations. But methods of
similarity in physics, which were used by Galileo and Newton in mechanics and
dynamics (and likely before by others), were developed further for hydrodynamics
in the centuries that followed. An examination of the reasoning used in problems in
physics from pendula to vibration of plates, if traced back to their sources, would
reveal the importance of using similarity along with observations and/or physical
models to inform both the formulation of the differential equations and the methods
of solving them.

Numerical methods and simulations are generally more cost-effective than build-
ing experimental physical models and setups for each and every situation one wishes
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2 How Mathematics Figures Differently in Exact Solutions ... 15

to investigate, but the widespread use of numerical methods and simulations does
not mean that they could be employed independently of the information gained from
experimental physical models and setups. As there seems to be cultural amnesia
about the significance of the role of experimental physical models and physically
similar systems, at least among philosophers of science’ and philosophers of math-
ematics, I ask the reader’s indulgence here as I take the time to describe some early
history of the topic that will be helpful in understanding the philosophical points in
this paper.'”

2.4.1 Physical Analogies in the Early Twentieth Century

In his “Exact Solutions and Physical Analogies for Unidirectional Flows” Bazant
(2016) notes that “In contrast to the more familiar case of Laplace’s equation . . .
conformal mapping cannot be as easily applied to Poisson’s equation, since it is not
conformally invariant.” He notes, however, that “mathematical insights allowed Pois-
son’s equation to be solved experimentally, long before it could be solved numerically
on a computer.” What can it mean to say that an equation can be solved experimen-
tally? What kind of ‘mathematical insights’ could enable that?

The ‘mathematical insights’ Bazant names are “mathematical equivalence of
beam torsion and pipe flow . . . [and] convective heat transfer”; and analogies with
elastic membrane deflections, soap bubbles, and “the potential profile of electri-
cally conducting sheets.” From such insights, scientists were able to build a setup
of one kind to determine the behavior—and for specific cases, determine values of
quantities—of another kind. One of the earliest, most well-known, and tractable of
these was the use of the analogy from membranes. A membrane was easy to create
from soap film, hence it became known as “Prandtl’s soap-film analogy.” Prandtl’s
insight was that an analogy between two quite different phenomena could be made,
“which could be described by the same differential equation if . . . specific parameters
were replaced in each case by other [specific parameters.]” In Eckert’s biography of
Prandtl, he writes about Prandtl’s paper describing analogous physical setups: “In the
first case, the distortion of a soap membrane which is stretched over the opening of a
container and bulges outward as a result of a small positive pressure in the container
is considered; in the other, the twisting (torsion) of a bar that has the same diameter
as the opening of the container” (Eckert 2019, 58). Eckert goes on to detail how
the same differential equation describes two different kinds of quantities in the two
quite different setups: “In the first case, the differential equation describes the lateral
buckling as a result of the positive pressure in the container; in the second case,

9 Sherrilyn Roush is a rare exception. In “The Epistemic Superiority of Experiment to Simulation”
(Roush 2018) she recognizes that “the solver” in a computer simulation incorporates sources other
than ‘the theory’ (p. 4886).

10'A Jonger treatment is given in Sterrett, Susan G. “Physically Similar Systems: a history of the
concept” Sterrett 2017.
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16 S. G. Sterrett

the tension along the circumference of a bar cross-section induced by the twisting
(torsion moment) of the bar” (Eckert 2019, 58).

Now, how, exactly, does one use soap film to get the solution of a problem using
a physical analogy? Here’s how: You would only have to construct the setup with
the soap membrane stretched over the opening of a container. Then, you could take
measurements as follows: “The angle of slope of the bulging membrane in the first
case corresponds to the shearing stress on the cross-sectional outline of the bar in
the second case. The volume over the opening caused by the bulging of the soap
membrane corresponds to the torsional stiffness of the bar” (Eckert 2019, 58). This
is how problems can be solved by measurements of the membrane in the setup of the
soap film membrane—i.e., solved ‘experimentally’. But how is a set of measurements
of distance in the soap film informative about stress in a bar?

Here the form of the mathematical (partial) differential equations displays the
analogy.

For the bar: [T]he torsion of a bar along its long axis (x-axis in a cartesian coordinate system)

is described by a stress function y(y, z), . . . The stress function conforms to the equation
%y 9ty
— + —5 =2Go
ayr 972

where G is a material constant (torsion modulus) and 6 the torsion per unit of length.

For the (soap-film) membrane: A membrane that is stretched in the yz plane over an opening
corresponding to the bar cross-section (tension S) and subjected on one side to a constant
pressure p will bend towards the other side by an elongation u(y, z). This elongation is
described by the equation

Pu Pu_p

a2 a2 s

From these two equations, an analogy is produced between the stress function for the torsion
of a bar and the bulging convexity of a membrane over an opening of the same surface as
the bar cross-section:

2GS
v=""u
p
11

You cannot see or easily directly measure the stress in the bar but you can see—and
measure—the distance that the soap membrane is bulging. So you construct the soap
film setup, measure the bulge u, and from it and the equation i = %u compute
the stress in the bar.

The insight arises from the mathematical form, i.e., the analogy can be intuited
because the physical quantities in both the bar and the membrane are expressed in
terms of functions that are solutions to partial differential equations—not due to any
experiential familiarity or knowledge about torsional stress in bars or deflections
in thin membranes. Prandtl felt the approach could be used in many more fields.

T Eckert (2019), 59.
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2 How Mathematics Figures Differently in Exact Solutions ... 17

To facilitate recognition of analogous physical situations by looking at the mathe-
matical equations, he felt it was of utmost importance to standardize mathematical
expressions across different scientific and technical areas of science and engineer-
ing. The idea was that doing so would increase the opportunities for the kind of
mathematical insights he had with the soap membrane analogy. The reason it was so
important to facilitate such insights was that seeing such analogies would allow peo-
ple to obtain solutions to partial differential equations not available any other way.
I take it that this is just what Bazant was referring to in saying that “mathematical
insights allowed Poisson’s equation to be solved experimentally, long before it could
be solved numerically on a computer” (Bazant 2016, 024001-2).

Bazant’s 2016 paper on physical analogies published in Physical Review Fluids
shows how really fruitful this approach is, even today. He writes about the “common
mathematical problem [that] involves Poisson’s equation from electrostatics

—Vu=k

typically with constant forcing k and Dirichlet (no-slip) boundary conditions on a
two-dimensional domain”, and notes that “The same problem arises in solid mechan-
ics for beam torsion and bending” and, in fact, in two dimensions, arises “for a
remarkable variety of physical phenomena” (Bazant 2016, 024001-2). He provides
a survey and then expands the number of physical analogies even farther. He lists a
total of seventeen, sketched in a figure; the caption lists them as follows:

Seventeen analogous physical phenomena from six broad fields, all described by Poisson’s
equation in two dimensions. Fluid mechanics: (a) Poiseuille flow in a pipe, (b) circulating
flow in a tube of constant vorticity, and (c) groundwater flow fed by precipitation. Solid
mechanics: (d) torsion or (e) bending of an elastic beam, and (f) deflection of a membrane,
meniscus, or soap bubble. Heat and mass transfer: (g) resistive heating of an electrical wire,
(h) viscous dissipation in pipe flow, and (i) reaction-diffusion process in a catalyst rod.
Stochastic processes: (j) first-passage time in two dimensions, (k) the chain length profile
of a grafted polymer in a tube, and (1) the mean rate of a diffusion-controlled reaction.
Electromagnetism: (m) vector potential for magnetic induction in a shielded electrical wire,
and the electrostatic potential in (n) a charged cylinder or (o) a conducting sheet or porous
electrode. Electrokinetic phenomena: (p) electro-osmotic flow and (q) streaming current in
a pore or nanochannel.

One of them is especially surprising, and shows the creativity and intellectual
insight in recognizing these analogies: the stochastic processes (j, k, and 1).

The role mathematics plays here is quite explicit: first, an understanding of anal-
ysis as used in mathematical physics allows someone to formulate partial differen-
tial equations in a canonical form; second, comparison of partial differential equa-
tions from various parts of mathematical physics provides opportunities to recognize
analogies between very different areas of mathematical physics; and third, once an
analogy is recognized, the equation permits someone to use a setup analogous to the
one that one wishes to have a solution of, to obtain a solution. The mathematical
equation also provides the mapping from a measured quantity in one of the setups
to the inferred quantity in the other.
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18 S. G. Sterrett

There are philosophers of science who are familiar with this kind of physical
analogy, in a general way. A common example cited is the harmonic oscillator,
which is the linear differential equation for a mass on a spring—and for many other
physical systems in nature, as well. Francisco Guala and Chris Pincock’s works,
to take two recent examples, exhibit familiarity with cases where an equation is
instantiated by more than one situation, and Pincock specifically mentions partial
differential equations, including Laplace’s equation and Poisson’s equation. Pincock
briefly discusses cases of scale similarity and dynamical similarity (experimental
scale models); he assumes that the dimensionless parameters used to effect this
kind of similarity are obtained from the equations that describe the two similar
situations.'? We shall see that although this may often be so, it is not necessarily the
case: there is another basis for similarity that does not require knowledge of even the
governing equations. The explanation for how we can establish that kind of similarity
without knowledge of the governing equation requires looking more broadly than
either of these two philosophers have, into the foundations of metrology and the
relationship between different kinds of mathematical equations and how they are
related to physical quantities. We turn now to that method: the method of physically
similar systems, via the use of dimensional equations.

2.4.2 The Method of Physically Similar Systems

The use of similarity by European scientists in the nineteenth and early twentieth
century was wide-ranging if not ubiquitous. There is not room here to convey the
breadth and depth of the uses made of similarity in physics, but I have tried to do so
elsewhere, and I refer the interested reader to that paper, “Physically Similar Systems:
A history of the concept” (Sterrett 2017). For the question that is the focus of this
paper, the role of mathematics in experimental physical models, I pick out a few
exceptional papers to highlight the distinctiveness of the method.

Against a backdrop of the impressive and exciting accomplishments made by
reasoning from analogy, resulting from the ability to formulate so many different
areas of physics in terms of partial differential equations of the same form, Helmholtz
brings a critical attitude to bear. He points out that there is sometimes a difference
in the behavior of two situations that are described by the same partial differential
equations—including the same boundary conditions. The two situations to which
he draws attention are: “the interior of an incompressible fluid that is not subject to
friction and whose particles have no motion of rotation” and “stationary currents of
electricity or heat in conductors of uniform conductivity” (Helmholtz 1891a, 58).
These two configurations share the same formulation in analysis, i.e., “precisely the
same” partial differential equations, and they have the same boundary conditions.
Yet, their behaviors differ. Helmholtz considers, and dismisses as implausible, the

12 Pincock (2012). Also all the people who have mentioned the harmonic oscillator and its several
instantiations have done so, of course.
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2 How Mathematics Figures Differently in Exact Solutions ... 19

explanation that the difference is a matter of the hydrodynamical equations being an
“imperfect approximation to reality” (Sterrett 2017, 392). Rather, he says, apparent
contradictions between the hydrodynamic equations and “observed reality” disappear
once it is recognized that discontinuous motions can occur in fluids. This is not a
case of the hydrodynamic equations being wrong, though. As I put it in explaining
Helmholtz’s view in previous work: “The problem with the hydrodynamic equations
is not that are wrong, for they are not; they are ‘the exact expressions of the laws
controlling the motions of fluids.” The problem is that ‘it is only for a relatively
few and specially simple experimental cases that we are able to deduce from these
differential equations the corresponding integrals appropriate to the conditions of
the given special cases.” So, the hydrodynamic equations are impeccable; it’s their
solution that is the problem” (Sterrett 2017, 392-3; citations from Helmholtz 1891a).

In case this seems puzzling, recall how the solution and equations they are a
solution to are related. The hydrodynamic equations are governing hydrodynamic
equations, but when it comes to the solution—and here he is talking about an exact
solution—the solution may be expressed in terms of an equation that involves an
integral. The function that is the exact solution is a function satisfying that integral
equation. And evaluating that integral is where attentiveness to discontinuities in the
fluid is called for, as it involves considering the range over which the pressure at
every point varies. Helmholtz next considers a suggestion to simplify the problem.
But he rejects that, too, as in some cases “the nature of the problem is such that the
internal friction [viscosity] and the formation of surfaces of discontinuity cannot be
neglected” (Helmholtz 1891b, 67). So you don’t want to deal with the problem by
simplifying it in a way that writes that complexity of the picture.

Another way to understand Helmholtz’s point here is to consider that people often
used these analogies to find solutions to equations in the way we discussed Prandtl
doing above using the soap bubble membrane. For instance, someone might use an
electrical circuit or setup to find the solution in a fluid flow setup. Then, Helmholtz’s
point would be that even though the governing partial differential equations are the
same, and the boundary conditions are the same, discontinuities in fluid flow can
arise in the fluid setup that will not arise in the electrical setup. The numerical value
of the pressure in the fluid flow setup turns negative in the interior of the fluid, and the
flow separates. Today in a practical context people would say that there is cavitation
in the flow, or that the flow cavitates, as flow discontinuities tend to form.

As I explained in earlier work (Sterrett 2017, 391), the surfaces of discontinuity
Helmholtz identified are an obstacle to finding a solution, too. For, as Helmholtz
writes, “The discontinuous surfaces are extremely variable, since they possess a
sort of unstable equilibrium, and with every disturbance in the whirl they strive to
unroll themselves; this circumstance makes their theoretical treatment very difficult.”
Theory being of very little use in prediction here, he says, “we are thrown almost
entirely back upon experimental trials, . . . as to the result of new modifications of
our hydraulic machines, aqueducts, or propelling apparatus” (Helmholtz 1891b, 67).
Well, what sort of experimental trials can he mean, if not the kind of analogy that he
has just explained cannot be relied upon?
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20 S. G. Sterrett

Helmholtz says there is another method, which he describes as follows: “In this
state of affairs [the insolubility of the hydrodynamic equations for many cases of
interest] I desire to call attention to an application of the hydro-dynamic equations
that allows one to transfer the results of observations made upon any fluid and with an
apparatus of given dimensions and velocity over to a geometrically similar mass of
another fluid and to apparatus of other magnitudes and to other velocities of motion”
(Helmbholtz 1891b, 68). Gabriel Stokes had already, in 1850, spoken of ‘similar
systems’ and identified conditions under which one could make inferences about
similar motions and about the relation of forces in similar systems; these conditions
have to do with relations between quantities in the systems (Stokes 1850, Sect. 5). In
later reviews of similarity in hydrodynamics, Helmholtz’s and Stokes’ methods are
identified as the same method, so Helmholtz is likely drawing on this earlier 1850
work of Gabriel Stokes, the same Stokes for whom the Navier-Stokes equations are
named.

The method Helmholtz means here is not a matter of deduction from theory, or
even of finding a solution to equations. In this paper of 1873, which soon become
foundational in empirical methods in flight research, we see that theory is still
involved in the kind of inference he describes. However, the way that theory is
involved is to allow someone to “transfer the results of observations made on one
thing (system, machine, mass of fluid, apparatus) over to another thing (system,
machine, mass of fluid, apparatus)” (Sterrett 2017, 68). It is implied, I think, that
the reason this is helpful in making predictions is that some observations are more
accessible, and some things are easier to manipulate and take measurements on, than
others. This is reminiscent of the approach used in the realm of applied mathematics
when using conformal mapping to obtain exact solutions to partial differential equa-
tions, i.e., to first transform a problem to a domain where it becomes more tractable,
solve the problem in the new domain, and then transfer the solution back to the
original problem. Now Helmholtz is talking about doing this with concrete, physical
things, but not based on the fact that both are instantiations of the same differential
equation, which, he has just shown, is not sufficient to allow one to transfer results
from one setup to another. Thus, while there is an apparent similarity, Helmholtz’s
reasoning does not have exactly the same basis as Prandtl’s soap-film method.

Helmbholtz shows how one can use the governing hydrodynamic equation to which
one does not have a solution to construct a mapping between two different fluids that
may have different characteristics. The constraint that both of them must satisfy
the hydrodynamic equations is used to determine how the various geometrical and
non-geometrical quantities (time, fluid density, pressure, and coefficient of friction
or viscosity) must be related. This induces a mapping (via a change of variables, as
in conformal mapping) between the two fluid masses. He also distinguishes com-
pressible from incompressible, and cohesive (liquids) from noncohesive (gases), and
so on, to determine all the constants used in the change of variables that induces the
mapping. In that paper, he shows how one can compare “a mass of water in which a
ship is situated” and “a mass of air in which an air balloon is situated” (Helmholtz
1891b, 73). This process does use the governing hydrodynamic equation to guide
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2 How Mathematics Figures Differently in Exact Solutions ... 21

the construction of the mapping, but it also formalizes the “peculiarities of air and
water” in doing so, too. His approach attends to how quantities are related to each
other.

In the 1873 paper, Helmholtz identifies a number of dimensionless ratios, each
of which is to this day considered fundamental in establishing similarity in meterol-
ogy and fluid dynamics. Dimensionless ratios are not constants.'> Dimensionless
ratios can take on various numerical values, and because the values of these ratios
are informative about the thing they describe, they are often called dimensionless
parameters. (A very simple case is the Mach number, which is the ratio of two veloc-
ities, hence dimensionless. Everyone is familiar with the Mach number being used
to indicate whether flight is subsonic or supersonic, for instance.) Thus dimension-
less parameters are informative about the similarity of two things with respect to
that physical feature, and they are used to judge whether two things are similar and
the ways in which they are similar. Helmholtz does not elaborate much on how one
is to determine exactly what is being compared; here he uses the terms “mass of
water” and “mass of air.” A more general formulation of Stokes’ earlier paper and
Helmbholtz’ insight here was enabled in the early years of the twentieth century, as the
field of thermodynamics developed and the notion of a system in thermodynamics
(conceived of as subsuming mechanics within it) was developed.

Osborne Reynolds, Ludwig Prandtl, and Rayleigh each individually made impor-
tant contributions regarding similarity in hydrodynamics worthy of in-depth discus-
sion in their own right, and I have discussed them in a longer historical paper on
the subject (Sterrett 2017, 394-397). In this chapter, we skip over them to get to
the definitive statement of physically similar systems, which came from a thermo-
dynamicist who was working as a physicist at the National Bureau of Standards:
Edgar Buckingham. Though an American, Buckingham had travelled to Germany
for his PhD work, working with Wilhelm Ostwald in Leipzig on a dissertation on
thermodynamics. He modestly described his contribution as merely attempting to
state the methods in use by researchers who used similarity methods, and to identify
a rigorous basis for them, but his statement in terms of “physically similar systems”
and “dimensional equations” was distinctively different from their works, and is
considered the landmark work today.'*

Buckingham took a more formal approach, one that was rooted in the nature of
scientific equations: the requirement of dimensional homogeneity. It is really about
the logic of equations. He was not the first to do so: Joseph Bertrand had likewise
located the foundations of similarity for both mechanics and hydrodynamics in the

13 T mention this because I have found that, inexplicably, many philosophers think they are.

14 Philosophers may be familiar with Buckingham’s work on dimensional analysis via Percy
Williams Bridgman’s book Dimensional Analysis (Bridgman 1922). Few if any have noticed Bridg-
man’s note in the Preface to that book expressing his indebtedness to the papers of Buckingham
and to Hersey at the Bureau of Standards for presenting Buckingham’s results in a series of lec-
tures. In my entry “Dimensions” in the Routledge Companion to the Philosophy of Physics (Sterrett
2021), I compare their treatments, how Bridgman’s treatment follows along the lines of Bucking-
ham’s, yet what has been lost in Bridgman’s partial understanding of Buckingham’s very deep and
philosophical work on the logic of dimensions.
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22 S. G. Sterrett

principle of the homogeneity of equations, and attributed the insight to Isaac Newton
(Bertrand 1878; Bertrand 1847). Newton had written about dimensions and units and
their relation to similarity of systems, even using the term “similar systems.”

In the now-landmark 1914 paper “On Physically Similar Systems: Illustrations
of the Use of Dimensional Equations”, Buckingham’s starting point is “the most
general form of a physical equation.” What he means by a physical equation is
an equation that describes “a relation which subsists among a number of physical
quantities of n different kinds.” Quantities, not variables. Dimensions, as the term is
used in dimensional analysis, was developed in the context of foundational investi-
gations into relations between quantities (e.g., Newton in investigating mechanics;
Fourier in investigating heat, 19th century physicists on the relations of quantities in
electromagnetism).

To get at the logic of the form of an equation that expresses a relation between
different kinds of quantities, Buckingham then pares down the number of quantities
by consolidating quantities of the same kind: “If several quantities of any one kind
are involved in the relation, let them be specified by the value of any one and the
ratios of the others to this one” (Buckingham 1914a; 345). Then, to start off simply,
he restricts the discussion to cases where those ratios do not change over the course of
time being considered. We are left with an equation expressing the relation between
n different kinds of quantities of the form F(Q;i, O3, ...0Q3) =0, where F is an
undefined function of quantities. Further reasoning about equations in physics leads
to the conclusion that every ‘complete’ equation of physics can be expressed in the
form: '3

ZMlel < 02b5...0,b, =0

This is where the logic of equations of physics comes in, as this is where a principle
concerning constraints on the equations of physics, i.e., the principle of dimensional
homogeneity, comes in. I first give this intuitive sense of the principle: in an equation
of physics, only commensurable quantities may be equated; only commensurable
quantities may be added. Buckingham refers to it as “a familiar principle”, credits
Fourier with first stating it, and states it in his paper as follows: “all the terms of a
physical equation must have the same dimensions” or, alternatively, “every correct
physical equation must be dimensionally homogeneous” (Buckingham 1914a, 346).

Some ratios, such as LT~ (length divided by time), will have a dimension,
whereas others, such as Mach number, which is the ratio of the speed of a projectile
to celerity (the speed of sound in the medium in which it is traveling) will not,
since the dimension is LT ~!'L~!T. By the time Buckingham was writing, there
were already well-known dimensionless ratios such as Mach number. These are
parameters, not constants. They can take on many values, and the value they take
on is often very informative (e.g., as Mach number varies from less than 1, to 1,
to larger than 1, it indicates a change from subsonic to critical point to supersonic
flight). Reynolds number (density - velocity - length divided by dynamic viscosity)

15 See Buckingham (1914a), 346 for his explanation of what the exponents in this equation indicate.
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2 How Mathematics Figures Differently in Exact Solutions ... 23

is likewise dimensionless and informative. In this case, it is indicative of flow regime
as it proceeds from laminar to turbulent flow. In his 1914 paper, Buckingham goes
on to show that, from his starting point of the most general form of a physical
equation, he can derive the fact that every physical equation can be expressed in
terms of dimensionless parameters, i.e., in the form ¥ (;r;, 7, ,) = 0, where ¥ is
an unknown function and the dimensionless parameters 7, are independent of each
other. I take the latter to mean that none of the dimensionless parameters 7, in the
equation can be expressed in terms of the others (Buckingham 1914a, 347).

In a brief work reporting on his progress on the topic of physically similar systems
for the first time (May 1914), Buckingham deduces the following, presenting it as a
theorem about scientific equations:

The theorem may be stated as follows: If a relation subsists among a number of physical

quantities, and if we form all the possible independent dimensionless products of powers of

those quantities, any equation which describes the relation is reducible to the statement that

some unknown function of these dimensionless products, taken as independent arguments,
must vanish. (Buckingham 1914b, 336)

I’ve provided the expository discussion above to help make some sense of what he
says here, but for the purposes of this paper I also wish to emphasize that it is a
theorem about the equations of physics, where physics is taken in a very inclusive
sense. Dimensions can loosely be thought of as kinds of quantities for our purposes
here. !

In later correspondence (to Rayleigh), Buckingham explains the role of logic and
algebra as compared to the role of physical theory in his account of physically similar
systems:

I had therefore . . . to write an elementary textbook on the subject for my own information.

My object has been to reduce the method to a mere algebraic routine of general applicability,

making it clear that Physics came in only at the start in deciding what variables should be

considered, and that the rest was a necessary consequence of the physical knowledge used at
the beginning; thus distinguishing sharply between what was assumed, either hypothetically

or from observation, and what was mere logic and therefore certain.!”

Now, being able to express a physical equation as an undetermined function of dimen-
sionless parameters is extremely empowering in terms of establishing similarity. In
this discussion, I am interested in concrete physical models, but the use of similarity
is not restricted to concrete physical models. The concept of physically similar sys-
tems can be applied to anything in physics that can be characterized as a system in the
sense the term is used in thermodynamics (which includes all of classical mechanics,
for classical mechanics is thermodynamics without consideration of the role of heat).

The methodology of physically similar systems enables one to use a physical
model to investigate phenomena in another system, but not, as in Prandtl’s use of
analogy, by insight into the form of the equation describing the system behavior—
and that’s what is so remarkable about the method of physically similar systems. The

16 T provide a more rigorous discussion in “Dimensions” (Sterrett 2021).

17 Edgar Buckingham: Letter to Lord Rayleigh (John William Strutt) dated November 13, 1915,
handwritten on official National Bureau of Standards stationery.
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24 S. G. Sterrett

process proceeds as follows: First, it is established that the model and what it models
are physically similar systems (with respect to some relation). Usually a system S’
is constructed in such a way as to be similar to the system S, and is regarded as an
experimental model of it, whether S exists in the actual world or is only a design on
paper. This is done by constructing the model and setting conditions so that the values
taken on by the dimensionless parameters (e.g., Mach number, Reynolds number)
are the same in the model as in what it is modeling. Buckingham’s discussion,
while somewhat formal, provides the basis for this: “Let S be a physical system,
and let a relation subsist among a number of quantities which pertain to S. Let us
imagine S to be transformed into another system S’ so that S” ‘corresponds’ to S as
regards the essential quantities.” He eventually deduces the nature of the similarity
transformation, spelling out how one would go about setting values so that the values
of the 7r's are the same in S as in S’ (Buckingham 1914b, 353ff).

The point is elegant, reminiscent of the elegance of conformal theory: the con-
straint that must be satisfied in constructing the system §’ is just that the value of the
dimensionless parameters that appear in the general form of the equation—the argu-
ments of the function ¢p—are the same in §’ as in S. Thus, the approach Buckingham
takes in constructing similar systems, the foundational basis for the construction of
physically similar systems, is not a method peculiar to any particular part of physics.
In that paper, he goes on to discuss applications of the method to electromagnetism
(energy density of an electromagnetic field, radiation from a moving electron, and
others), dynamics, and heat convection, and argues that the method is quite general.
This can be very puzzling, for it doesn’t seem that there is enough information in
the antecedent of the theorem to permit the conclusion. Is there something about
scientific equations that contributes to the argument? The answer to this is yes, and
it is a matter of metrology, the science of measurement.

The requirement of a coherent system of measurement, i.e., one in which the
relations between the units are the same as the relations between quantities, was
adopted in the nineteenth century, and by the time Buckingham was thinking through
the basis for similarity while working at the National Bureau of Standards, he could
take coherence of the system of units being used in physics for granted. The logic
of the quantities on which measurement systems are based is actually logically prior
to the measurement system, so there is a lot of physics built into the system of
measurement. The requirement that the system of units used in physics be coherent
(in the above sense of the term) thus allows logical consequences to be drawn that
could not be otherwise be drawn.'®

I think it clear that, despite the spare elegance of Buckingham’s account of phys-
ically similar systems, there is more at work than mathematics in accounting for the
power of physically similar systems. The method he described for model experiments
(experimental physical models) was based on a formalism that is in some sense even
more fundamental than the mathematical equations describing the behavior of inter-
est, and yet in some sense dependent on them: dimensional analysis, which we can
think of as a formalism or language for quantities and the relations between them.

181 discuss this in more detail in Sterrett (2019).
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Metrology and systems of measurement were developed in tandem with new devel-
opments in physics, and the use of the kinds of equations used in modern physics
(as opposed to the proportional equations of previous eras) created the need for
them. They were developed in order to enable the use of numerical interpretations
of equations of physics.'” That knowing the answer to “What are the relevant quan-
tities involved?” is enough is striking, and is often met with incredulity. What was
remarkable about Prandtl’s soap-film method was that the solution to an equation
could be obtained experimentally using analogy between equations. But the method
of physically similar systems goes one step farther, in that one need not even have the
equation describing the phenomenon of interest in hand. It is understandable that the
claim is met with incredulity, unless and until the role of the coherence of a system
of units for physics is appreciated.

I have two comments regarding the point that one can construct experimental
physical models to investigate a phenomenon even when one does not have in hand
an equation describing the phenomenon of interest.

First, the point is limited to physics (as opposed to areas of biology or sociology
where one cannot draw on the same features of a system of measurement). In physics,
knowing which of the quantities are relevant to a phenomenon of interest—and which
are not—is actually quite a good deal of information. This is of course due to the
role of the coherence of the system of units used in physics.

Second, the formulation that Buckingham provided is really very special and,
I think, contingently available to us. The point about being able to do without the
equation describing the phenomenon to be modeled might not have been recognized
were it not for his imprint on the method.?’ The proofs and practices behind model
experiments were actually not entirely new in 1914, a point he freely offered himself.
But, the approach in terms of an investigation into the “most general form of physical
equations”? That was new. The attention to the nature and role of the equations of
physics—that attentiveness came from a physicist who had been in a community
of philosophically engaged physicists who were actively discussing what units (e.g.,
temperature, charge) were needed in physics and what the logic of numerical scientific
equations was. He had been in the thick of discussions about the role of equations in
physics while studying for his doctorate in Germany, when Ostwald and Boltzmann
were in dialogue. The question of whether equations were indispensable in physics,
or whether, alternatively, models and analogies might do that work for the emerging
physics of the day, was seriously debated (e.g., by Ludwig Boltzmann). And, then,
years later, he found himself assigned the question of whether there was a proper
methodology for the interpretation of model experiments, this time in the milieu of
the National Bureau of Standards in Washington DC, where scientific research into

19 As an historical-philosophical account of equations in physics and the concomitant development
of metrology, I recommend De Courtenay (2015).

20 Note that Helmholtz, writing much earlier and in an era that predated coherence of a system of
units for physics in the sense it is used here, was able to show how to establish the similarity of
two physical situations, too, but that he did so by using the hydrodynamical equations. He derived
dimensionless forms of the equations, and then established that if the dimensionless coefficients
were the same between two situations, they would have similar motions.
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26 S. G. Sterrett

establishing standards for units was being done. That he begins that investigation
with the topic of “the most general form of physical equations” is something I find
noteworthy as a philosopher.

It would be a mistake to dismiss Buckingham’s work, as so many philosophers
have, as about “little scale models” or about engineering technology.?! It is some
of the deepest thinking about the logic of the equations of physics there is. Yes, of
course, it was possible only due to all the work on similarity by other physicists, and
there is no doubt that he was fortuitously located in a position unique to those writing
about the basis for model experiments (experimental physical models). What should
be recognized is how much more enlightened we are—or at least, could be—about
the nature and role of equations, as a result of this philosophically informed account
of the basis for model experiments (experimental physical models). The method of
physically similar systems is not restricted to scale models, either, but is generally
applicable.

2.5 Conclusion

In none of the uses of mathematics surveyed in this paper—exact solutions, sim-
ulations (numerical approximations and agent-based) and experimental physical
models—is the solution to an equation simply a matter of deduction. Even in the
purest example of mathematics surveyed here, i.e., exact solution of partial differen-
tial equations, the role of insight was crucial. Conceiving of the kind of mapping that
might work for the problem at hand is a far cry from a straightforward application of
deductive methods. This was no less true for simulations. In addition, with numeri-
cal simulations, we saw that experiential information was inextricably knit into the
process by which computer simulations are produced.

We also encountered practices in science in which results that previously were
thought to require an equation describing the phenomenon of interest were obtained
without use of the equation. Though not news, it should give us pause that agent-
based models (consisting of many agents with very simple rules) are being used to
investigate behavior previously investigated using differential equations describing
the behavior of continua. Most numerical methods employ a differential equation
or equations describing the target behavior in some way, but agent-based models
are completely different in this regard. The use of physically similar systems is
another scientific practice wherein results previously thought to require having an
equation describing the phenomenon of interest were obtained without the equation.
Nineteenth century methods for using concrete physical models based on insights
about analogies between equations were developed by Prandtl, Stokes, Helmholtz,
and many others. But their similarity methods, while somewhat reliant on insight
about mathematical analogies, still centered on the differential equations governing

21 One prominent philosopher of science, referring to Buckingham, chastised me for writing about
the work of “an obscure engineer” in my book Wittgenstein Flies A Kite (Sterrett 2005).
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the phenomenon or behavior to be investigated. The method of physically similar
systems does not. In fact, it does not require having the equation in hand in order to
construct and use model experiments.

Surprisingly, it was in what one might have thought the application most depen-
dent on practical insights, i.e., using concrete physical models, that we came across
something closest to a general method for finding a solution. While it is certainly
true that experiential knowledge is involved in various ways in using the method
of physically similar systems, some of them nontransparently so, it is notable that
the mappings (between what is to be modeled and the model, and then from model
results back to what is to be modeled) can be obtained without having the equation
in hand. A set of relevant dimensionless parameters can be obtained from partial
knowledge, i.e., from less knowledge than the equations describing the phenomenon
being investigated.

It was in examining the basis for physically similar systems that an account
explaining why experimental physical models can be so informative about what
they model was provided. In fact, Buckingham discussed equations of physics using
a whole other formalism: the language of quantity, e.g., of dimensional analysis. He
used the formalism of a different kind of equation, dimensional equations, in tandem
with the kinds of equations used in physics. The explanation of why the method
of physically similar systems worked as well as it did, when it did, had to do with
something not contained in the practices of deriving solutions either computationally
or via mathematical proofs. It relied on the coherence of the system of units used
in physics, which is not a matter of mathematics or logic, but is constructed apart
from it, and involves both empirical results and community decisions (Sterrett 2019;
De Courtenay 2015; De Courtenay 2021). It is a vast understatement to say that this
point is not appreciated in philosophy of science or philosophy of mathematics. It has
not gone totally unrecognized, but the work on it is seldom taken up in discussions
where it would shed much light.??

Though this short paper is an investigation into the role of mathematics in science,
it began and ended discussing equations. It has ended by recognizing a much more
complex account of the equations of physics than occurred at the start (when con-
sidering exact solutions to differential equations). Because of the work on the role
of dimensional equations (Buckingham 1914a; Buckingham 1914b) in showing how
transformations that could solve questions about the behavior of physical systems
could be answered in spite of not having an equation for that behavior, and the role
of metrology (De Courtenay 2015) in enabling the use of the kinds of equations now
used in physics, we can now see what we might not have realized otherwise about
equations: that there is much more to them than what they say.

22 De Courtenay (2015) provides an excellent account that appreciates that the role of metrology in
enabling the use of numerical equations in science is well-hidden (as intended).
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